Given f(x) is a differentiable function.

Fill in the blanks to complete the table below

f(x)	f'(x)	f''(x)
f(x) is increasing	f'(x) > 0	
f(x) is decreasing	f'(x)<0	
f(x) has a local max when x=a	f'(x) changes signs from positive to negative when $x = a$.	f"/a) < 0
f(x) has a local minimum when $x = a$.	f'(x) changes signs from negative to positive when x = a	f"(a) > 0
f(x) is concave down	f'(x) is decreasing	f''(x) < 0
f(x) is concave up	f'(x) is increasing	f"(x) > 0
f(x) has a point of inflection	f'(x) changes from inci to dec or from dec to inc	f" (x) changes signs

The graph of f'(x) is given below. Sketch a possible graph of f(x).

4. A graph of f'(x), the derivative of f(x), is given below. The domain for f(x) is all real numbers.

- a) On what interval(s) is f(x) increasing? Explain.
- f(x) is inc on (-00, -3.2) ((-1.3, 1) b/c f'(x) > 0.

f(x) has a local max at x = -3.2 & x=1 ble f'(x) changes signs from + to -.

a) f(x) has a local max

ex = -2 b/c f'(x)

changes signs from + to
f(x) has a local min

ex = 0 b/c f'(x) changes

signs from - to t

does not change signs

b) f(x) is increasing on [-3,-2), (0,2), d(2,3]

b/c f'(x) > 0

c) f(x) is concave down on (-3,-1) d(1,2)

y/c f''(x) < 0 (f'(x) is decreasing)

